6,674 research outputs found

    Grand unification through gravitational effects

    Get PDF
    We systematically study the unification of gauge couplings in the presence of (one or more) effective dimension-5 operators cHGG/4MPl, induced into the grand unified theory by gravitational interactions at the Planck scale MPl. These operators alter the usual condition for gauge coupling unification, which can, depending on the Higgs content H and vacuum expectation value, result in unification at scales MX significantly different than naively expected. We find non-supersymmetric models of SU(5) and SO(10) unification, with natural Wilson coefficients c, that easily satisfy the constraints from proton decay. Furthermore, gauge coupling unification at scales as high as the Planck scale seems feasible, possibly hinting at simultaneous unification of gauge and gravitational interactions. In the Appendix we work out the group theoretical aspects of this scenario for SU(5) and SO(10) unified groups in detail; this material is also relevant in the analysis of non-universal gaugino masses obtained from supergravity.Comment: 27 pages, 5 figures, 8 tables, 1 appendix, revtex; v2: introduction and conclusion expanded, references added, minor changes, version published in PR

    Black hole entropy, curved space and monsters

    Full text link
    We investigate the microscopic origin of black hole entropy, in particular the gap between the maximum entropy of ordinary matter and that of black holes. Using curved space, we construct configurations with entropy greater than their area in Planck units. These configurations have pathological properties and we refer to them as monsters. When monsters are excluded we recover the entropy bound on ordinary matter S<A3/4S < A^{3/4}. This bound implies that essentially all of the microstates of a semiclassical black hole are associated with the growth of a slightly smaller black hole which absorbs some additional energy. Our results suggest that the area entropy of black holes is the logarithm of the number of distinct ways in which one can form the black hole from ordinary matter and smaller black holes, but only after the exclusion of monster states.Comment: 5 pages, revtex. Final version to appear Physics Letters

    Child Sexual Abuse in Asian American Families: An Examination of Cultural Factors That Influence Prevalence, Identification, and Treatment

    Get PDF
    Child sexual abuse affects thousands of families each year. Issues pertaining to the prevalence, identification, and treatment of sexual abuse have been relatively well explored in the literature as they pertain to the dominant European American culture. These issues, however, are still relatively unexplored in terms of how sexual abuse affects Asian American families and the Asian American community. We review the relevant literature in Asian American families. These matters are explored in the context of Asian American values such as collectivity, conformity, inconspicuousness, middle position virtue, shame, self-control, and fatalism. Attitudes toward family, sexuality, and the mental health system are also discussed. Cultural and institutional barriers to underutilizing mental health services are also explored, and suggestions for overcoming these barriers are offered

    Unitarity and the Hilbert space of quantum gravity

    Full text link
    Under the premises that physics is unitary and black hole evaporation is complete (no remnants, no topology change), there must exist a one-to-one correspondence between states on future null and timelike infinity and on any earlier spacelike Cauchy surface (e.g., slices preceding the formation of the hole). We show that these requirements exclude a large set of semiclassical spacetime configurations from the Hilbert space of quantum gravity. In particular, the highest entropy configurations, which account for almost all of the volume of semiclassical phase space, would not have quantum counterparts, i.e. would not correspond to allowed states in a quantum theory of gravity.Comment: 7 pages, 3 figures, revtex; minor changes in v2 (version published in Class. Quant. Grav.

    An integrated strategic sourcing process for complex systems

    Get PDF
    Thesis (M.B.A.)--Massachusetts Institute of Technology, Sloan School of Management; and, (S.M.)--Massachusetts Institute of Technology, Engineering Systems Division; in conjunction with the Leaders for Manufacturing Program at MIT, 2009.Cataloged from PDF version of thesis.Includes bibliographical references (p. 85-88).Aerospace firms continue to outsource increasingly complex components and systems for access to talent, lower costs, and global presence. In addition to strong competition from Airbus and other emergent companies, Boeing is faced with the challenge of reducing financial risk and placing work internationally to offset foreign sales obligations. The organization has recognized a need for an integrated framework to consistently make sourcing decisions that limits subjectivity and positions the company for continued success. This thesis is based on a six-month internship study with the Future Production System team based in Seattle, WA and it examines the strategic sourcing decision process at Boeing Commercial Airplanes. A discussion-based strategic sourcing process utilizing a holistic range of factors is proposed to test whether an expensive, complex, and integrated system like a composite airplane wing should be outsourced or if it should be designed and produced internally. This workshop-based strategy development process develops weighted factors through a structured, cross-functional process where multiple proposals can be evaluated based on their performance against a set of quantitative and qualitative factors such as cost, quality, flow, knowledge management, stability, and risk. The development of a baseline sourcing proposal for a composite airplane wing demonstrated the process. Careful assumptions were made and data collected to ensure a realistic scenario for a future single-aisle plane. The documented baseline wing sourcing strategy includes recommendations for proximity, design integration, and production responsibilities.by David T. Hsu.S.M.M.B.A

    Monsters, black holes and the statistical mechanics of gravity

    Full text link
    We review the construction of monsters in classical general relativity. Monsters have finite ADM mass and surface area, but potentially unbounded entropy. From the curved space perspective they are objects with large proper volume that can be glued on to an asymptotically flat space. At no point is the curvature or energy density required to be large in Planck units, and quantum gravitational effects are, in the conventional effective field theory framework, small everywhere. Since they can have more entropy than a black hole of equal mass, monsters are problematic for certain interpretations of black hole entropy and the AdS/CFT duality. In the second part of the paper we review recent developments in the foundations of statistical mechanics which make use of properties of high-dimensional (Hilbert) spaces. These results primarily depend on kinematics -- essentially, the geometry of Hilbert space -- and are relatively insensitive to dynamics. We discuss how this approach might be adopted as a basis for the statistical mechanics of gravity. Interestingly, monsters and other highly entropic configurations play an important role.Comment: 9 pages, 4 figures, revtex; invited Brief Review to be published in Modern Physics Letters

    A conserved circadian function for the Neurofibromatosis 1 gene

    Get PDF
    Summary: Loss of the Neurofibromatosis 1 (Nf1) protein, neurofibromin, in Drosophila disrupts circadian rhythms of locomotor activity without impairing central clock function, suggesting effects downstream of the clock. However, the relevant cellular mechanisms are not known. Leveraging the discovery of output circuits for locomotor rhythms, we dissected cellular actions of neurofibromin in recently identified substrates. Herein, we show that neurofibromin affects the levels and cycling of calcium in multiple circadian peptidergic neurons. A prominent site of action is the pars intercerebralis (PI), the fly equivalent of the hypothalamus, with cell-autonomous effects of Nf1 in PI cells that secrete DH44. Nf1 interacts genetically with peptide signaling to affect circadian behavior. We extended these studies to mammals to demonstrate that mouse astrocytes exhibit a 24-hr rhythm of calcium levels, which is also attenuated by lack of neurofibromin. These findings establish a conserved role for neurofibromin in intracellular signaling rhythms within the nervous system. : Bai et al. show that the gene mutated in the disease Neurofibromatosis 1 is required for maintaining levels or cycling of calcium in circadian neurons in Drosophila and in mammalian cells. These effects likely account for effects of Nf1 on circadian behavior in Drosophila and may be relevant in explaining sleep phenotypes in patients. Keywords: circadian rhythms, neurofibromatosis 1, Drosophila, peptide signaling, cycling of calcium, mouse astrocyte
    • …
    corecore